5. X-ray Energies and Intensities

Tables 7a, 7b, 7c, and 7d list energies and intensities for x-rays with intensities greater than 0.001 per 100 primary vacancies in the K, L_1 , L_2 , and L_3 atomic shells, respectively. The first column shows the Siegbahn notations for the x-ray transitions (the associations with initial and final atomic-shell vacancies are given in Table 6). The following columns give, for each element, the x-ray energies in keV (boldface) rounded to the nearest eV, and their corresponding intensities directly below. Intensities for the L x-rays are totals from both primary and secondary atomic-shell vacancies.

X-ray energies have been determined from differences between the corresponding atomic-shell binding energies reported by Larkins. Energies of complex x-ray transitions, e.g., $L_{\beta_{2,15}}$, are unweighted averages of those for the single-line components.

X-ray intensities have been determined from the experimental relative emission probabilities of Salem, *et al*,² and the atomic yields of Krause.³ The theoretical emission probabilities of Scofield⁴ were occasionally used whenever experimental values were not available.

The relative intensities of x-rays from the same initial atomic shells are independent of the processes creating the shell vacancies. Tables 7a-7d may, therefore, be used to separate experimentally unresolved or complex x-ray intensities from the photon tables of the *Table of Isotopes*. Table 5 shows the initial atomic shells and their associated x-rays, and the procedure below illustrates the separation of an x-ray peak.

Table 5

The single-line x-ray intensity of a specific transition *i* from an initial atomic shell *j* is

$$I(ji) = \frac{I}{I^{\circ}} I^{\circ}(ji) \tag{1}$$

where I is the measured (or photon-table) intensity value of a single or complex x-ray transition from atomic-shell j, I^0 is the intensity of the same x-ray transition from Tables 7a-7d, and $I(ji)^0$ is the intensity of the specific i x-ray transition from atomic-shell j, also from Tables 7a-7d. As an example, the uranium K_{β_1} intensity per 100 disintegrations of 235 Np is 5

$$I(K_{\beta_{1}}) = \frac{I(K_{\alpha_{1}})}{I(K_{\alpha_{1}}^{0})}I(K_{\beta_{1}}^{0}) = \frac{0.957}{45.1}10.70 = 0.227\%.$$
 (2)

 $I(K_{\alpha_1}^0)$ is from the photons table for ²³⁵Np, and $I(K_{\alpha_1}^0)$, and $I(K_{\beta_1}^0)$ are from Table 7a. Calculations for the L₁ atomic shell may be more complex, because none of the x-ray transitions in the photon tables of reference 5 is associated exclusively with this shell.

¹F.B. Larkins, At. Data and Nucl. Data Tables 20, 313 (1977).

²S.I. Salem, S.L. Panossian, and R.A. Krause, *Atomic Data and Nucl. Data Tables* 14, 91 (1974).

³M.O. Krause, *J. Phys. Chem. Ref. Data* 8, 307 (1979).

⁴J.H. Scofield, Atomic Data and Nucl. Data Tables 14, 121 (1974).

⁵ E. Browne and R.B. Firestone, Table of Radioactive Isotopes, John Wiley & Sons, Inc. (1986).

Table 6. Notations for X-ray Transitions

Classical designation (Siegbahn notation)	Associated initial - final shell vacancies
Κ _{α1}	K - L ₃
K_{α_2}	K - L ₂
Κ ^η α ₂ Κ ^α α ₃	K - L ₁
N	K - M ₃
	K - L ₁ K - M ₃ K - N ₂ N ₃
	K - M ₂
κ ^{β3} κ	K - M ₂ K - N ₄ N ₅
Κ ^{β4} ΚΟ _{2,3}	$\left \text{K} - \text{M}_{4}^{4} \text{M}_{5}^{3} \right $
$KO_{2}^{P_{5}}$	$\left \text{ K - O}_{2}^{4} \text{O}_{3}^{\circ} \right $
KP _{2,3}	K - P ₂ P ₃
2,3	L ₃ - M ₅
L _{α1}	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
L _{α2} L ₂	1 - M
, ^{-β} 1	$\begin{array}{c} L_{3} - M_{4} \\ L_{2} - M_{4} \\ L_{3} - N_{4}N_{5} \\ L_{1} - M_{3} \\ L_{1} - M_{2} \\ L_{3} - O_{4}O_{5} \\ L_{3} - N_{1} \\ L_{2} - N_{4} \\ L_{1} - N_{2} \end{array}$
_β _{2,15}	1 - M
$-\beta_2$	1 - M
- β ₋	$L_3 - O_4 O_5$
_ _B	L ₃ - N ₁
ν,	L ₂ - N ₄
	-1 112
-01	L ₁ - N ₃
ν _ο	$L_{1}^{1} - N_{3}^{2}$ $L_{2} - O_{4}$ $L_{2} - M_{1}$
L' ⁶	$L_2 - M_1$
L	L ₃ - M ₁
Group designation	Associated transitions
$K_{eta_{2}}^{'}$	$K_{\beta 1} + K_{\beta 3} + K_{\beta 5}$
$K_{\beta_2}^{'}$	$K_{\beta 2} + K_{\beta 4} +$
L_{α}^{L}	$L_{\alpha_4} + L_{\alpha_6}$
$L_{\alpha}^{L_{2}}$	$\begin{bmatrix} L_{\beta_1}^{\alpha_1} + L_{\beta_2,15}^{\alpha_2} + L_{\beta_3} + L_{\beta_4} + L_{\beta_5} + L_{\beta_6} \end{bmatrix}$
L_γ^{F}	$\begin{array}{c} K_{\beta 1} + K_{\beta 3} + K_{\beta 5} \\ K_{\beta 2} + K_{\beta 4} + \dots \\ L_{\alpha} + L_{\alpha} \\ L_{\alpha_1} + L_{\alpha_2}^2 + L_{\beta} + L_{\beta_4} + L_{\beta_5} + L_{\beta_6} \\ L_{\gamma_1} + L_{\gamma_2} + L_{\gamma_3} + L_{\gamma_6} \end{array}$